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Abstract 

'The calculation of the components of the stress tensor under symmetric cylindrical 
shock wave loading, when the pressure impulse of cylindrical symmetry is being spread 
uniformly along the surface of an infinite cylindrical elastic body, have been carried out. 
The objective of these calculations is to assess with a sufficient approximation the stress- 
deformed state in samples during low intensity axis-symmetric shock wave loading. The 
necessity of such an assessment is grounded on a wide utilization and practical 
applications of shock wave axis-symmetric loading used in the explosive processing of 
advanced materials. Tile main assumptions made at the initial stage of these calculations 
are: elasticity and isotropy of medium, constancy of the sound speed and Lame elasticity 
constants, and medium boundary conditions of cylindrical symmetry. Subsequently, the 
removal of some assumptions during the investigation process makes possible to take into 
account effects engendered by boundary conditions' asymmetry and changes in the sound 
speed and Lame constants These changes are caused by irreversible thermal 
transformations going on in the medium. Well known methods for solving differential 
equations, such as the Fourier method, functions of Bessel, Neumann, and Hankel, 
equations of Helmholtz, are used in these calculations. These calculations, assuming axial 
symmetry, are presented as a set of simple equations where the arguments are 
components of the stress tensor and the solution of this set, for this specific case, gives all 
the components of the stress tensor. 



Introduction 

A number of investigations have been dedicated to the study of the disturbance processes 
which take place in materials as a result of the effect of a quickly changing explosive 
pressure[ 1-31. This process covers inany coniplex phenomena, and depending on the 
loading intensity level, it rnay be assumed that the solid body behaves either as an 
absolutely elastic one, or loses entirely its hardness and behaves as a liquid. Depending on 
this assumption, and €or the analysis of the ongoing phenomena, every researcher faces 
the necessity to chose one of' two alternative theories: the elasticity or the hydrodynamics 
one. 'The analysis of the last publications [3-61 shows that more and more authors are 
inclined to describe these phenomena applying the elasticity theory. Evidently this is 
linked with the necessity of a more precise theoretical description of the experimental 
results obtained during the shock loading of materials (such as a formation of new phases, 
texture, directed deformation of the crystalline lattice, etc.). Intensively running shear 
deformations dictate that we must take into account the value of and the relationships 
between the components of'the normal and shear stresses. This issue is particularly 
important during the material treatment with the sliding front of the detonation wave that 
due to its configuration, intensity value and operational usability is quite attractive. The 
present article contains results obtained as an attempt to calculate the components of the 
stress tensor, assuming axial loading symmetry and that pressure is being spread 
uniformly with a constant rate at the storage capsule/sample boundary. 

Results and Diiscussion 

Let us define the stress components when, during the axis-symmetric loading, the 
pressure impulse initiated upon the cylinder's side surface moves along the axis with a 
constant speed. During these calculations, the following basic assumptions are made: (a) 
the ambient space is isotropic and elastic; (b) the ambient space parameters do not 
change during the effects of the impulse process; (c) the boundary conditions as well as 
the ambient space have cylindrical. symmetry; and (d) axial symmetry is assumed as well 
as cylindrical symmetry. 

It is to be mentioned that in the: next stagers of theses investigations, some of the 
restrictions mentioned above could be removed, in particular (b) and (d) ones. It will 
make possible to forecast effects engendered by the boundary conditions' asymmetry and 
to take into account change:; of sound speeds and Lame elastic constants provoked by 
irreversible thermal transformations during the ambient space loading. 

The basic equation, satisfied by the displacement vector has the following form: 

Taking into account that 



where c, and cI stand :for relatively sound’s trarrsversal and longitudinal speeds, 

then equation. (1) acquires the following form: 

-1 c;Ldzl-t (c: -c:)graddivii. (3) 

Without any restrictions, ii may be presented as a sum of two items: 

u’ = i?/ +i l l ,  (4) 
- 

where, divii, = 0 w zi, = rot A (5  I )  

and, rot i;, = 0 m i;, = gradrp , 6) 

Substituting (4) into (3) and taking into account conditions (5/ ,1) ,  we have: 

Let us effect by “div” operator on the both parts of the equation. With regard for 
condition (5J, we will have: 

div ul = c: A div iil + (c: - c: ) div grad div iil , 

Whence 

Accordingly to the condition (5/),  we have also EUI equation: 

So, we have the vector 

which satisfies the conditions: 

divcl = o ,  ro t t !  = o  
--f 3 

in all points of the cylinder, including surface. 

Such a vector can be only parallel to the axis of cylinder and does not depend on the 
distant to it (generally, time dependent), then 
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where k is the ort of Oz axis (cylinder's axis). So, from, (7), (7') and (8) equations we 
obtain : 

Similarly, operating by rot on the both sides of equation. (6 )  and with regard for condition 
( S I )  we obtain the fallowing equation: 

The $ functions presented in equations (9) and (10) are arbitrary ones so far. Thus, for 
transverse as well as for longitudinal waves we have equations of common type, and with 
the correspondent boundary condilions that they can be solved as a product: 

(that is Fourier method). Them: 

Equation. (12) gives the scalar equation for it's; longitudinal (z) component: 

and gives the homogeneous equation for transverse (x and y) components: 

The equation. (14) reduces to two equations in r and t variables: 

From the equation. (1 5 )  we have: 

Substituting (1 7) into (1 3) we obtain: 



hence, variables' separation is made in the equation (1 S), that indicates that so far the 
undetermined function f ( r )  has to satisfy the Following conditions: 

f ( t )  =Jb ~ ( t )  -fo( y+e'"'+ y.elw'), 

while for the function t i ,  (?) we obtain: 

(19) 

Let us designate: 

(21) CC) 2 1 ~ 2  = k 2  

and write down the equations (16) (Helmholtz equation) and (20) for functions Zx(7), 
GI, (7) and Ez (i') in cylindrical coordinates: 

If the axial symmetry is disturbed: du, # 0,  then, let us multiply equation (22a ) on 
aa - 

i 4-1 and add to equation (22,). 

W = O .  k2W + AW - --W + -- 1 2i a 
r 2  r 2  aa 

Separating variables in the equation (23) W(r, a,.z)=@(r,a)Z(z) , we get two independent 
equations: 



The solution of the equation (24,) gives: 

Z(Z> = Z+e + z ._ . 

Separating variables in the equation (242) g(r,a) = R ( r ) A ( a )  we obtain: 

A"+2iA'+ h2 A = 0 ; (27) 

R' h2 +1 
r r 2  

R"+-- + ( x 2  - -----)R I 0. 

The solutions of Hessel equation are 

Here r/ = h + 1, and 1, (x) , N, (x) , Hil ' (x )  arid Hi2'(x)  stand for Bessel, Neumann, Hankel, 
I kind and Hankel I1 kind functions, respectively. There is a connection between these 
solutions: 

and they satisfy the boundary conditions: 

4 (0) = 0; N" (0) = -00. (31) 

In order to get finite value at r = 0 (on the axis of cylinder) we have to assume D =O), 
hence, 

The general solution of equation.(%'7) is 

The 
we get 

) function must be periodic ~ ( a  ) = A(@ + 2n in order to be single valued. So 

Because of (26) and (32)-(34) the solution of equation (23) has the form: 



Re and Irn parts of this expression give us the functions E,, and Ea : 

;,.(r,a,z) = ReW = In& r)(B, cos(z5 (n -1)a -I- tT,) + B2 cos(z5 +(n + 1)a +a2)+ 
+B3c0s(z5 -(n+l)rx+S,)+B,cos(z~- ( n - l j x  +a,)), (36) 

u”,(r,a,z)= ImW =l& r)(B, sin(zy+(n-l)ai-8,)-B2 sin(zg+(n+l)a+6,)+ 
+ B3 sin(zS - (n + 1)a -+ 6,) - B, sin(zS - (n - 1)a + 6,)) , (3 7) 

Let us devise variables in ho.mogeneous equation 

corresponding to the equation (22,). For the solution u”,O(r,a,z) = R, (r)A,(a )Z,(z) of (38) 
after the simplification we get the equation 

which can be split in to independent variable e,quations: 

( k 2  -si” --T)RZ a2 +~---(r-$.)==O, 1 d dR 
r 

with the solutions: 

As well as above, single valuence of the function A, (a) , A, (a) = A ,  (a + 2n ) lead to: 

(42) e 2nia = 1, a = n = 0, kl, 1t2 ... 
Hence equation. (402) reduces to the Bessel equation, which has a solution 

R: 0.1 = C J ,  (Xf) 9 

finite on the Oz-axis of the cylinder (at r = 0). Here 

(43) 
2 2 2  X z = k  -Gz 



Thus, a general solution of homogeneous equation (38) is: 

1. is: 2 + Z-e-is: 2 ug(r,a, z)  = I,(XZr>(A+e-’a” + ~ - e - ’ ” ” > ( ~ + e  

So, general solution of Inhomogeneous equation (22,) is: 

G(r9a,z)  -u~(r,(x,z)+Cf,/cZ))IC J(r’,z’)dV’, (dV’= r’dr’dr’dz‘) 

where G(r;z) is the corresponding Green function which satisfies the equation: 

1 
r 

(k’ +A)G(r,z)  = -6 ( r )6  (z)6(a)  

As it is known, the solution of equation (46) is 

Taking into account that the integration in (48) is executing on infinite volume of the cylinder and 
using the formulae ([7], 8.421.(1 l), 6,684.(1,2) and [8], 9.30.1), after simplifications we get (R 
stands for the radius of the cylinder’: 

I := in  j! r’dr‘f & ,HA’) &p:- rt2 + (z - z ’ ) ~  - 2rr‘cosa )= 
0 0 

The result is not depend on z. This; means that the second term in the right side of (48) describing 
the oscillations of the cylinder, as of rigid body, along Oz-axis. It is clear that the amplitude of 
such oscillations must be zero: f, = 0 , according to transition symmetry of the problem with 
respect to Oz axis, as well as according to the energy conservation low. Hence, taking into 
account (1 l), (1 7), ( 3 9 ,  and (44) we get all thee components of the displacement vector: 



so, taking into account ( 3 9 ,  one can get: 

u, - u,, + 2iu, = -+ ---- - u, +ha) = -+ --- - 
(:r i) (:r : f r  i ) ~ .  

It is easy to check, that the stress tensor's components are 

E E a i a  i w ,  
CT,, -o, + 2 i o ,  ==--[u, - u  +2iur,:]=- -+-- 

l-tor (Ya 1+&r r 8 a - F )  

(54) 20, i- 2io,, = --- 

io -1 
1-20 

CTzz +i(a, +<T,a)+--20-ar= 

- E l  - -------{(1- 0 + 2i0)u.. u + (CT -I- i) (urr + u,,, + (io - 1) 2u , ,}= 
1-1-01-20 ' 

(1-0 +2io)--t-(a au + i )  
(1 +a)(l- 2 0 )  aZ 

- - I- 

where F stands for complex. conjugate of W . 



Real and imagine parts of the left-hand-sides of these three complex formulae unique defined all 
six (real) components of stress tensor. Thus, (53)- (55)  formulae give us expressions for the six 
real functions, or the- six real components of stress tensor - using only two (complex) functions 
u, and W and their derivatives. 

In the case of axial symmetry, these expressions simplifies: 

orr - oaa .t 2i0, = 

(1-0 +2i0)-+(0 au, ti) [$+:)}. ( 5 6 )  
(1 ScT )(1-20 ) aZ 2 0  ar := -- o-- -ti(arr + abp, t-- io-1 

1-20 .- 

Solving the system of equations (33, one found an explicit form for these expressions: 

a r  "1 r 
i+o au au 

(1+0)(1-20) 2 aZ aZ a, =- E [- I m L - C T  Re 2 . t  (1 -a)Re -+ a Re - , 

"1 r 
a u  aw - CT Re -I + CT Re -+ (1 - a) Re - , E offa =:- 

(1 + o)(l - 20) az a r  

a* = 
2(1+ 0) 
1 E  

1 E  
(57) 

The formulae (57) strongly decrease the volume of necessary numerical calculations (and 
computing time, correspondingly) and, due to decreasing intermediate operations, improve an 
accuracy of results. Using formulae (1 7), (35)  and the third equation of system (49) give us 
possibility to calculate stress tensor's components without of calculation the displacement tensor 
explicitly. 

Conclusions 

The results obtained in this research make it possible to calculate the components of the stress 
tensor without the explicit calculation of the displacement tensor. This methodology strongly 
decreases the volume of necessary numerical ca.lculations (and thus computing time) and, due to 
the decreasing intermediate operations, improves an accuracy of results. 



The analyses performed show that, without loosing generality, it is possible to calculate all the 
components of the tensor of‘ stress-deformed axial-symmetric sample, in any case of dynamical 
loading. 

This method allows us to generalize the conditions of investigation and, at the next stage, take 
into account the non-symmetric boundary conditions and the effects of the non-reversal thermal 
processes, which take place in real experiments. 
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